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Toroidal ion-pressure-gradient-driven drift instabilities and transport

revisited
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A unified theory of ion-pressure-gradient-driven drift wave instabilities and transport is
presented, which ties the long-wavelength trapped-ion mode to the moderate-wavelength
hydrodynamic mode in toroidal geometry. An analytic dispersion relation that retains ion drift
resonances, and keeps the leading-order contribution from finite Larmor radius effects and
parailel compressibility, is derived. Results indicate that the slab and toroidai branches of these
instabilities are of comparable importance, and are both strong candidates to explain the
observed anomalous ion loss in toroidal fusion devices. However, it is concluded that in the
limit of flat-density profiles characteristic of H-mode discharges, the stabilizing influence of
perpendicular compressibility is insufficient to corroborate an improvement, if any, in ion
confinement quality. Mixing-length expressions for the fluctuation amplitudes and both
electron and ion transport coefficients are derived. Results also indicate that the heretofore
experimentally observed favorable current scaling of the energy confinement time may saturate
in low ion-collisionality discharges. Finally, it is shown that a population of energetic trapped
particles, such as those that may be produced during radio frequency or perpendicular neutral
beam heating, can significantly exacerbate the instability. Several suggestions for experiments
are made to help in differentiating among various anomalous transport scenarios.

I. INTRODUCTION

Evidence that instabilities and turbulence driven by the
ion-pressure gradient can dramatically degrade the quality
of ion thermal confinement has been borne out to an impres-
sive degree by a number of recent experiments. The first
clear indication of anomalous ion loss came in connection
with the D-III experiment,’ where the Ohmic confinement
time was observed to saturate at high density (7 «n) al-
most an order of magnitude below the predictions of neoclas-
sical theory.”® Experiments on all subsequent tokamaks
have reconfirmed this observation.*® Further insight into
the nature of the problem came with the observation on Al-
cator-C* that the injection of frozen pellets of deuterium into
the ambient plasma acted to reduce the level of ion thermal
conduction losses to their neoclassical value, while leaving
the anomaly in the electron thermal losses unchanged. The
improvement of ion energy confinement with pellet injection
received further corroboration in recent experiments per-
formed on both the TFTR’ and ASDEX® tokamaks. Per-
haps the most dramatic evidence in favor of the association
between anomalous ion losses and the premature saturation
of energy confinement time with density came in connection
with recent heterodyne far-infrared (FIR) laser scattering
experiments on TEXT.® By examining the spectral charac-
teristics of electrostatic fluctuations at various densities,
Brower and co-workers observed the onset of fluctuations
propagating in the ion direction to coincide with the satura-
tion of 7 with density. That the quality of ion confinement
degrades further in the L-mode regime of auxiliary heating,
has also been evidenced in the D-III tokamak.* In that ex-
periment, inferences of the ion thermal diffusivity (y,)
based on ion temperature profile measurements indicate that
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in the bulk of the plasma (0.2 5r/a%0.8, where a is the
minor radius), y; is not only larger in magnitude, but also
exhibits a radial profile significantly at odds with the predic-
tions of neoclassical theory. Finally, the recent observation
on ASDEX' of a regime of improved confinement with
counter neutral beam injection, which resuits in an inward
particle pinch and consequent steepened density profiles, is
again consistent with the results of pellet injection experi-
ments mentioned earlier. The results of all these experiments
has lent strong credence to the theory that losses stemming
from ion-pressure-gradient-driven drift waves are responsi-
ble for the premature saturation of the energy confinement
time.

As originally formulated in slab geometry, this so-
called sonic or slablike 7, mode (%, = d In T./d In n,, where
T, and n, are, respectively, the ion temperature and density)
evolves when unstable ion acoustic waves couple to radial
ion pressure gradients. As was noted by Horton et l.'® and
Guzdar et al.,'” the introduction of toroidal curvature com-
pletely changes the nature of the mode. In toroidal geome-
try, the mode has more of a ballooning structure and is driv-
en by unfavorable magnetic curvature rather than acoustic
waves. In low plasma collisionality regimes, ion trapping
enters as a new and important added ingredient to this pic-
ture. These trapped-ion modes are not susceptible to parallel
compression, and hence constitute the long-wavelength
branch of the toroidal ion-pressure-gradient-driven family
of instabilities.'*~2° In recent work, we have investigated the
nonlinear evolution of the resonantly destabilized trapped-
ion-temperature-gradient-driven instability.?'*> Threshold-
dependent, non-steady-state turbulence was shown to devel-
op, leading to large levels of anomalous thermal and particle
transport that, in turn, reconfigure the equilibrium tempera-

11-15

© 1988 American Institute of Physics 109



ture and density profiles in such a way as to return the system
toward its marginal point. The main motivation for the pres-
ent work is to tie the trapped-ion branch in with the well-
known fluidlike toroidal Vp,-driven mode, and thus present
a unified theory of ion-pressure-gradient-driven drift insta-
bilities over all wavelengths.

It is reasonable to ask for experimental features suffi-
ciently universal that any theoretically based transport sce-
nario must be able to account for them. Three such require-
ments come to mind. The first is the universally observed
improvement in confinement quality with increasing plasma
current. Unfortunately, experimental evidence in favor of or
against an intrinsically local current dependence is inconclu-
sive at the time of this writing. Preliminary evidence from
power balance calculations on the Joint European Torus
(JET)* appears to imply a current scaling in the bulk heat
flux.* Should this observation persist for the ion channel
separately (there were no ion temperature profile measure-
ments available on JET), the imperative will be for an intrin-
sic current dependence rather than one which is dynamically
coupled to transport processes at the plasma edge. However,
neither one nor the other can be dismissed at this time. A
second requirement, which theories of ion-pressure-gradi-
ent-driven drift wave instabilities and transport must be able
to account for, is the degradation in confinement with input
power, which manifests itself indirectly in the Ohmic regime
through the current dependence of the Ohmic input power,
and directly in the L-mode regime of confinement when aux-
iliary sources of heating are utilized. Finally, an adequate
theory must be able to simultaneously explain the improve-
ment in confinement after the transition from L- to H-mode
operation,?>-?" as well as that after pellet injection.*” On first
glance, these two requirements appear to be mutually in-
compatible, as the density profiles characteristic of H-mode
discharges, in contrast to pellet-fueled plasmas, are very flat,
and consequently force 7, to significantly exceed its thresh-
old value. However, in the limit of very weak density gradi-
ents (i.e., 7, — ), it has been shown by Tang et al.?® that the
relevant stability parameter governing these modes becomes
L;/R  rather than u,=L,/L; (where L'
= —dInf/dr). Moreover, Dominguez and Waltz>° have
suggested, based on a fluid analysis, that perpendicular com-
pression can completely stabilize the instability. However, as
we shall show here, fluid theory may not be optimal to un-
cover any stabilizing trends resulting from compressibility,
and any threshold criteria so obtained can only be regarded
as indicative.

Before presenting the details of the analysis, we provide
here a preamble of what is to follow. As we pointed out in the
preceding paragraph, a proper evaluation of the influence of
perpendicular compression must have its foundation in ki-
netic theory. In Sec. II, we therefore begin by analytically
deriving the dispersion relation for these instabilities from
the gyrokinetic equation. The derivation fully retains mag-
netic drift resonances, and includes leading-order correc-
tions resulting from finite ion Larmor radius (FLR) and
parallel compressibility. After a general discussion of stabil-
ity properties using Nyquist diagrammatic techniques, we
make several analytically tractable approximations in order
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to elucidate the essence of the mode. Having accomplished
our goal in uncovering the influence of perpendicular com-
pression, we find it more feasible to continue our discussion
of transport scaling within the context of fluid theory. In Sec.
I1 C, we derive scaling laws for the thermal flux and diffusiv-
ity that have differences with those derived in the past.'®?%-3
The reasons for these differences are discussed. Ion-pres-
sure-gradient-driven turbulence not only provides a direct
loss mechanism for the ion channel, but can also degrade the
quality of electron confinement. Noting that the dissipative
trapped-electron mode is thought to be responsible for the
degradation of the electron channel in the bulk of the plas-
ma, we provide estimates of the level of particle and electron
thermal transport that can be expected to ensue in response
to ion turbulence. In Sec. III, we discuss the long-wave-
length branch of these modes, namely trapped-ion-pressure-
gradient-driven modes. It is shown that because of their
longer wavelengths, thermal diffusion driven by the latter
can significantly exceed the corresponding one for the hy-
drodynamic branch. In Sec. IV, we focus on the flat-density
limit of these instabilities. When proper account is made for
perpendicular compressibility, it is shown that, within the
limits of the theory, the stability threshold associated with
L/R is too stringent to ever be satisfied, making complete
stabilization with respect to these modes unattainable. In
Sec. V, we consider the interaction of an energetic trapped-
particle species, such as those that are created during auxil-
iary heating, with the background plasma, and consider how
the instabilities are affected. 1t is found that for a sufficiently
localized energetic particle deposition profile, the instability
can be exacerbated by unfavorably trapped energetic parti-
cles. We conclude the paper with a summary of the major
results, and a discussion on how these results impact on ex-
periments.

Il. TOROIDAL Vp,-DRIVEN MODE

In order to have confidence in uncovering the influence
of perpendicular compression, a kinetic theory must be em-
ployed in lieu of fluid theory. In this section, we derive the
dispersion relation governing Vp;- driven modes using kinet-
ic theory, and make analytically tractable approximations in
order to capture the essential features of the mode. The rel-
evant frequency ordering is given by

DperDye D> Wy > |‘0| ~Wg; > Wp;sWyiy
where v, (@,) = § dl/ oy is the magnetic bounce (transit)
frequency, o, = v}&;*VIn nXk,/2Q, = —k, pv,/2L,, is
the diamagnetic drift frequency, o] = 7o, , & =B/B is
the unit vector in the direction of the ambient, magnetic
field, p = v,/Q, is the Larmor radius, v, = (2T /m)"/?is the
thermal speed, (), = eB/mc is the cyclotron frequency,
L, = — (dInn/dr)~" is the density gradient scale length,
k,=m/r is the poloidal wave vector, o, =o,
X1+ n(E/T—3/2)], @ is the mode frequency, and o,

=k, v,=(uVB+v))e; Xk, /Q =a,@ +7:/2)
X G(5,r) is the magnetic drift frequency, w, = — kg pv,/R,
E = /2 is the energy per unit mass, 7 = v/v,, k = &V,
is the magnetic curvature, and G(3,r) contains the spatial
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variation of @,. Ion trapping can thus be ignored, and the
electron response is assumed to be adiabatic. The latter as-
sumption is justified because electron dynamics plays essen-
tially no role in the linear stability analysis; the same argu-
ment carries over to the case of the trapped-ion mode. Final-
ly, it may be verified a posteriori that the right-hand side
inequality bounds poloidal wavelengths from exceeding a
banana width p, ~€~'/%g p,. The perturbed circulating-ion
response can be obtained from the gyrokinetic equation

Of, = — (eb¢/T,)Fy; + Oh,. exp( —iL), (n
sk, =22 (kl"l) © g
b Ti 0 Q(:i @ — Wy, "‘k” U” Mi?

z——e5¢(l—blﬁi+ (@4/@ai)’T) )
T, [Q— @ +3/2)]

Q-QL@ +0 +97'—3
Q— (B +7:/2)

Fy. (2)

In the above, w, = kv, is the ion transit frequency, L
= ¢*v, Xk, /Q,, is the Larmor factor, J, is the zeroth-order
Bessel function, F,, = (n,/7/%})exp( — 7?) is the unper-
turbed Maxwellian ion distribution function, A, is the non-
adiabatic circulating-ion response Q = /@, QL, = wl,/
@y =R /2L, and b, = (k, p;)?/2. We have made a small
Larmor radius expansion, and in expanding the denomina-
tor in the first line of Eq. (2), we have taken note of the fact
that odd »; moments vanish. After some tedious manipula-
tions, which are relegated to the Appendix, an analytic dis-
persion relation which retains drift resonance effects is de-
rived:

D(Q) = Dy(Q) + Dp g () + Ds (D), 3)
where
Dy()=—(1+7)+7Y?
+0L {[(1—5-")/Q-2] Y? 42V},

Drr _ _y2_sqr—1y
b,
YZ
+sz:,-(2(77,~—'+2m(¥—1)2+Q )
Ds(Q))
(a’n'/adi)z
3
e
[“ 7 2
x[l——(1+—1—)Y+Y—2
20 Q
+QT.[Q—(Q+—3-)Y+(2——1—)Y2]
! 2 20 ’
and

{93
Y=0Q"2exp( — Q) f dzz7'"?expz.

Some general results can be ascertained by performing a
Nyquist analysis of Eq. (3). Thus one maps the upper com-
plex frequency domain into the complex-D plane, and an
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instability criterion follows from the condition that the ori-
gin be encircled by the image contour. First note that

Q-+ o0 =>D(to)~—7"'=b +{1-Q 5"

—b (37" D]k,
Q=0"=>DO0) =~ +7"Y+aQl{n "'-1

+ 27712022971 - 3)
X1+ (@,/@4)*(1/74Q)1}.
The imaginary part of D({}) is given by
Im D()) =~Im Dy(2)
=~ —27'2Q" 2 exp( — Q)

X(QL + {1 - QL[ (7' = 1)/Q +2]}Y,),

where ¥, = Q"2 exp( — Q) fldzz=""?expz. The corre-
sponding Nyquist diagram for the unstable case is sketched
in Fig. 1. Two requirements must be met in order for instabil-
ity to take place: (i) 27,7 ' — 3 <0, and (ii) Re D(Qg) >0,
where () is defined by the condition Im D(Q;) =0 (cf.
Fig. 1). The first of these imposes a criterion on 7; (i.e.,
7, >3 or 7, <0), while the second imposes a condition on
QI,, or equivalently, L,/R. In general, the latter can only
be determined numerically. Before discussing numerical re-
sults, we may gain further insight into the nature of the mode
by looking at the nonresonant limit of the dispersion rela-
tion.

AImD

Y

m
8
>
m
]
@
o

FIG. 1. Nyquist diagrams, featuring the unstable upper half frequency
plane, and the image path in the D plane for instability.
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A. Local nonresonant analysis

Expanding Eq. (3) in the limit of 2> 1, the leading-
order radially local dispersion relation reduces to

a)de - w*e [7a~)de/4 - w*e(l + 77,‘)]5‘19
1+ — 5
w TwW
kTvi\ @, (1+7;
+(b1— I 2:1) we ( +77)=0‘ (4
20 2]

It may be verified a posteriori that the validity condition for
Eq. (4) is 1>€"2, and 1 > b, > €/¢%, where € = r/R is the
inverse aspect ratio. The first term in Eq. (4) is the adiabatic
electron response. The second set of terms represents mag-
netic rotation; unlike MHD, these terms survive because the
electrons respond differently than the ions, resulting in in-
complete charge cancellation, and hence magnetic drift rota-
tion. The third set of terms contains the stabilizing (since
@4, >0) contribution due to perpendicular compression,
and the potentially destabilizing (i.e., w, @, > 0) contribu-
tion due to adverse magnetic curvature. Finally, the last set
of terms contain contributions resulting from finite ion Lar-
mor radius and the uncompensated drift of compressed ions.
The slablike branch can be recovered in the limit of R — o
(i€, Dy —0): @3 = — kﬁvf,.(l + 1,)/2. In this limit, the
mode is driven unstable by parallel sound waves. This limit
has been examined in detail elsewhere'*'* and will not be
pursued further in this work. The toroidal branch can be
obtained by looking at the limit k, p; >k v,/ (@,.B4.)"">.
Then, parallel compression can be treated perturbatively
(ie., ® = 0, + dw,, ) and to leading order,

206, = [1 = b, (1 + 7)) |0y, — Bae
+{[1 =5, (1 +7,)] L.
+ (14777 H@2,
=2[1+ 2771 + 7)) | @y @} (5)

The stability of these modes is determined by the interplay of
several dimensionless parameters: b,,L,/R, and L;/R

(also 5/q, as will be seen in the nonlocal analysis). It is mis-
leading, therefore, to think of their stability simply in terms
of the parameter 7,. Some general observations may none-
theless be made. First is the fact that depending on the wave-
length and equilibrium gradients, the mode can reverse its
sense of propagation from the electron to the ion direction.
For instability—and hence transport—to occur without the
inclusion of electron dissipation, these modes rotate in the
ion direction. Second, it can be readily verified upon inspect-
ing the radicand that for sufficiently steep density gradients,
the mode is quenched, a feature that dovetails with the ex-
perimental observation of improved confinement with pellet
injection. Rigorously, the Nyquist analysis of the full disper-
sion relation shows this critical value of 5, to be . Third, we
note that perpendicular compression exerts a stabilizing in-
fluence on the instability. The precise stability threshold will
be taken up in Sec. IV. Finally, of potential relevance to the
improved bulk confinement of H-mode discharges is the fact
that for inverted density gradients, the threshold in 7, for
instability to set in is enhanced. This can be seen upon noting
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that for inverted density gradients, both w,,, and 7, change
sign, so that the only source of destabilization now comes
from the temperature gradient term, i.e., the last term in the
radicand. The fastest growing mode is that associated with
moderate wavelengths [i.e., €'/*/g<k, p;~(1+7,)"""?]
and is given by

’Vtorz{[%_*"'r_l(l +ni)]w*e5de}1/2' (6)
Perturbatively, parallel compression results in a real fre-
quency shift of magnitude 8w, /@y, =k Vi, (1 +75,)/
%, A, where A is the radical in Eq. (5). At marginality (i.e.,
A =0), parallel compression yields a stabilizing contribu-
tion given by (8@, /1o, ) =k | Vi, (1 + 7,) /@3, since
then the mode is propagating in the electron direction.

B. Nonlocal analysis

The radially nonlocal theory is best implemented by ex-
ploiting the ballooning representation.®' That is, we take
note of the fact that in order to utilize their free energy
source—unfavorable curvature—in the most efficient man-
ner, these modes tend to localize about the magnetic field
minimum and “balloon” outward. Expanding the nonreso-
nant dispersion relation about this point, the eigenmode
equation becomes

92 .
A< 4B 002) =0,
( FrEil ¢ 7

where — oo <1< + oo is a variable Fourier conjugate to
the distance away from the mode rational surface in real
space, and the true potential d¢ is to be reconstructed in
terms of an infinite sum of aperiodic quasimodes &(19). In
the above,

A= (wiw*e/2w3)(1 + 7],’),

° .
B =142 [T( Da —1)+be(1+77,-)]

7)) (0*‘,
@Dy, 0Dy, 10,4,
+ *—zd'( 147, — = ) >
@ do,,
8 B, §_
C = xe Vo { 1 + ; + Dy, § l2
O, bo¥

75
(o2}
w 20,

w, =c¢,/qR, ¢} =2T,/m,; is the sound speed, and b,

= (kg p;)?/2. In writing down Eq. (7), we have expanded
the FLR term as b, = b, (1 + §*3?), and the nonlocal vari-
ation of the magnetic drift frequency as

G(§,8) =cos ? + 3dsind~1+ (3 — )2

Equation (7) is the well-known Weber equation. The valid-
ity condition for this latter expansion is that the eigenmode
decay within one oscillation of the potential well, i.e., €'/?/
gb,8sm/4. The eigenvalue condition is just B
= +i(2n+ 1)(AC)"/?, withna non-negative integer, and
where the lower sign must be chosen to satisfy causality.
Assuming (3 — §)/5 <b,/€''?, the lowest eigenvalue be-
comes
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2a)tor = [1 _bo(l +77i)]w*e —Z)de
+{[1-b,(1 +7,)])0},
+ (1 +7r ek, —2[1+ 277 (1 + 7))

X (14 8/\29) |0y @4} (8)
The lowest eigenmode now has a growth rate

O =H{ [} + 770+ 7)1 + 8/29) ] 0,3, 1> (9)

The limit of §/9 < 1 recovers the result obtained from the
local analysis. The corresponding radial mode width is given
by

(k, pi)? =2(3/9) (B e/ |00 |)- (10)

C. Transport

We finally turn our attention to estimating the level of
heat and particle transport expected to evolve from these
modes. A proper evaluation of the transport coefficients re-
quires a steady-state solution of the field evolution equations
while fully taking account of the destabilizing source (“stir-
ring”), dissipation, and transfer between these two ranges
(regulated by turbulent E X B advection). The result of such
analyses in the past has been to recover the scaling predic-
tions of a proper mixing-length theory (we shall discuss
shortly what we mean by “proper”), but with a slowly vary-
ing multiplier. The latter physically takes account of the sum
over all scales over which the local mixing-length theory
holds, weighted by how strongly each scale is excited. The
analysis required to recover this multiplier is often involved
and lengthy. Short of such a detailed nonlinear analysis, we
may turn profitably to mixing-length theory if we are pre-
pared to content ourselves with the more modest goal of
uncovering the local parameter scalings. In this endeavor, it
is more illuminating to work within the context of fluid
equations.

We write down the dominant balances at steady state
(i.e., d/Jt =0) in the vorticity, parallel momentum, and
pressure equations:

V'@kvvz¢~lé"'vVn +lwde(ps/cs)n, (11)
V- D VM ~io,,(p./c,)[(1 +9,)/7]®, (13)

where ® =ed¢/T, is the normalized fluctuations, V)
= 8, /¢, is the normalized parallel velocity fluctuations,
I1=908p,/P;, is the normalized pressure fluctuations,
P, = n, T, is the equilibrium pressure, and all length scales
have been normalized to p,; = ¢, /.. In writing down Eqgs.
(11)-(13), we have employed experience gleaned from re-
normalized perturbation theory to write the transfer terms
(E X B advective nonlinearities) as turbulent diffusion oper-
ators,

gk = E gk",w” (k'ps)2<¢’)iy (14)

“

where g, - - is the appropriate renormalized propagator,
and where (- - ) represents a spectral average. Here, &, is
normalized to the Bohm diffusivity D, = p.c,. The left-
hand side of Egs. (11)—(13) represents the turbulent mixing
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of vorticity, parallel momentum, and pressure, respectively.
The terms on the right-hand side of Eq. (11) represent paral-
lel compression and curvature drive, respectively. The right-
hand of Eq. (12) represents the acceleration resulting from
the parallel electric field and the parallel pressure gradient.
Finally, the right-hand side of Eq. (13) represents the advec-
tion of equilibrium pressure by the fluctuating EXB drift.
Writing the radial correlation length as A, , we invoke two
asymptotic balances in order to determine the transport scal-
ings. The first is a balance between the turbulent mixing of
pressure over a nonlinear mode width with the curvature
drive. This gives

D~ (ps/ ) [Baeye (1+1,)]' A%, (15)
In writing down Eq. (15), we have taken account of the
spatial variation of the magnetic drift frequency [i.e.,
G (5,9)]. The second asymptotic balance, which determines

the radial correlation (or mixing) length, is between vorti-
city diffusion and parallel compression:

A~ [(g/9)(R/kpH D ] (16)

Substituting for &, from Eq. (15) into Eq. (16), we obtain
an expression for the mixing length at which saturation oc-
curs:

pon( 2 1)
k a2~ .
5 Wy, T

(17)

Note that this is at odds with the oft-invoked assumption®® of
spatial isotropy (k, = k, ), which fails to take account of the
ballooning structure of the toroidal ion-pressure-gradient-
driven drift waves (k, > k4), and consequently yields erro-
neous expressions for the transport coeflicients. The level of
diffusion necessary to maintain a dynamical balance
between turbulent transfer of energy and curvature drive is
then

kp? 1 ;
2,-91% 1+m
5L, T
The level of potential fluctuations (and hence through quasi-

neutrality, density fluctuations) can be obtained upon sub-
stituting the expression for &, into Eq. (14), yielding

1/2 pox 1/4 \3/4
5_"=_e5¢~(;1> ES_(“’*) (1+’7') .9

ng T, s L @, T

€
The pressure fluctuations are related to the potential fluctu-
ations through

@~( Dy 1+77,4)‘/2 eb¢
P \a, 1 T,

It is important to note that the level of pressure fluctuations
can be substantially higher than that of potential fluctu-
ations. The physical reason for this is that since the instabil-
ity under consideration is essentially driven by the tempera-
ture gradient, the level of temperature fluctuations
significantly exceeds that of density fluctuations, i.e., 5p,/P
=6n,;/ny+ 6T./T,;>8n,;/n, = ebp/T,. Thus the choice of
potential fluctuations as the mixing field within the context
of the present problem, as sometimes done in the past,?® is
incorrect and leads to erroneous results. Using Eq. (19), we
may now obtain an expression for the rms pressure fluctu-
ations:

(18)
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(20)

Sp A\ Ps [ @ye )1/4( 147, )5/4
P~ (5 ()
The radial heat flux is given by Q; = (8v, dp), where bv, is
the turbulent radial velocity. Substituting from Egs. (19)

and (20), we have

kole, { 1+ 7,V
9 5P (__”_) P, 21)
Ql :g\ L 3' T i (
The ion thermal diffusivity is then given by
. 1 .
O T P R (22)

“apjar 0%

These expressions are, of course, only valid for 7; >7,,.
Three features of Eq. (22) are noteworthy. First is the pro-
portionality of y, with k,. That thermal transport is more
severe at shorter wavelengths than at long is a direct conse-
quence of the more rapid rate of decorrelation between
waves and particles as one progresses to smaller scales. Al-
ready from the result of the linear analysis, we can impose an
upper bound on k, p; of (1 4+ 5,) /2. A more confident
upper bound awaits a fully nonlinear theory. Second is the
fact that the expression for the thermal diffusivity evinces an
intrinsically local inverse linear scaling with current
(through the ¢ dependence). This feature may be of rel-
evance to experimental inferences of such scaling if, as dis-
cussed in the Introduction, they were to be borne out for the
ion channel alone. There are caveats to this statement, a dis-
cussion of which we will postpone to the Conclusion. Final-
ly, as is already apparent from the dependence of the heat
diffusivity on bulk gradients, it should be noted that the level
of transport is quite severe for 7, > 7,.,. The implication is
that equilibrium profiles will have a strong tendency to re-
main close to marginality with respect to ion-pressure-gradi-
ent-driven modes. We will return to this point in the Conclu-
sion.

While directly responsible for the degradation of the ion
channel, ion-pressure-gradient-driven turbulence can also
induce enhanced particle and heat loss through the electron
channel. In the bulk region of the plasma, dissipative
trapped electron modes are expected to be the dominant loss
mechanism for the electrons. The nonadiabatic piece of the
trapped electron distribution function is given by

6h —_i €5¢ w_w*e[l +'7]e(l)2/vi, _%)]
T, v,/€

Iﬂwe’
where v, is the electron collision frequency. An estimate of

the radial particle and electron heat flux can then be ob-
tained as

( ge) N J:r d ( meiz/z) (bv, &8f.)

1
- /2
(3Te(1 + m)/Z) € nop,

3 1/2 1 . 3/2
s {@xe@ac) gfs_( +17.) o
v, 3L, T
from which follows
Do~Xe~ [0 i)' /v, ] [+ 7./ Py (28)
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where & , is the particle diffusion coefficient. As pointed out
in Ref. 14, y, and y; have quite different scalings, and, al-
though they may be of comparable magnitude in specific
instances, it is, in general, quite misleading to arbitrarily as-
sume them to be equal.

It is of interest to compare the expressions for the fluctu-
ations and transport coefficients obtained here to corre-
sponding ones for the slab branch.'*'® Insofar as the density
fluctuations are concerned, the slab branch exhibits a strong-
er dependence on 7, than the toroidal branch. Insofar as the
thermal diffusivities are concerned, both branches exhibit
identical scalings with the safety factor and shear. In order of
magnitude,

X' R

¥ L
For moderate aspect ratios, there is no sound basis for distin-
guishing between the two experimentally, especially since
equilibrium profiles can be expected to be pinned near their
marginal values. Indeed, regardless of the aspect ratio, one
branch or the other of the ion-pressure-gradient-driven
mode will survive.

Finally, we may proceed to look at the scaling of the
energy confinement time with parameters of interest. How-
ever, the very notion of using a Jocal expression for the heat
diffusivity in deriving the energy confinement time, and then
comparing the result with experimentally inferred scalings
which in turn depend on global parameters, is not only un-
trustworthy, but can also be very misleading. For this rea-
son, we deliberately eschew such an analysis.

1+
pant

(25)

n

{Il. TRAPPED-ION Vp,-DRIVEN MODE

As plasma parameters push into the low collisionality
regime, ion trapping can no longer be ignored and needs to
be accounted for in the stability and transport analysis. The
relevant frequency ordering is now given by

wbi’wu‘ >w*i > |a)| Z (T’di’Veﬁ‘.i’
where v, ~v,;/€ is the effective ion collision frequency.
Consider first the “collisionless™ trapped-ion branch. The
toroidal ion-pressure-gradient-driven branch of Sec. II C
smoothly connects onto this branch as we go to longer wave-
lengths (i.e., ko p; <€’*/q). The essential difference be-
tween the two modes is that parallel compression (and
hence, shear damping) and the spatial variation of the mag-
netic drift frequency are removed from the analysis upon
bounce averaging of the drift kinetic equation. The disper-
sion relation is then given by

1+T_l+5de—w*e [75d9/4—w*“(1+ni)]5d8
2\/-22 @ ’7"6()2
1 .

@
where (-+*) = ¢ dl("')/v” denotes a bounce average,

and 2\/2¢ is the fraction of trapped particles. In writing down
Egq. (26), we have ignored the circulating-ion response, as

well as the distinction between 8¢ and 8¢ . The fastest grow-
ing mode now becomes
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Ve =(V2e{[1 4201+ 7,)/7)/(1 4+ 77 D}, B0 ).
(27)

Because of the fact that parallel compression is removed by
bounce averaging, the radial mode width is given by
(ke8) ™', so that the simple mixing-length expression for the
thermal diffusivity is

Xi~ (ko$) *[V2€ 0, @y (1 +7:/7) ] V2. (28)

Comparing this expression with the corresponding one for
the toroidal %, mode, we have

x;r/xtor~63/4/q§(k9 Di )2’
which can significantly exceed unity at long wavelengths. A
natural upper bound on the wavelength is imposed by the
requirement that v ; not be greater than y,,.

From Eq. (26), it is clear that to have instability, one
must satisfy the condition

204+ 7Y 1+, S Dy

J2€ T Dy,

yielding a critical 7, on the order of €~ '/2. If Eq. (29) is
violated, then the trapped-ion mode becomes purely oscilla-
tory. In previous work'® with the influence of temperature
gradients ignored (i.e., ; = 0), it was noted that this so-
called dissipative trapped-ion mode, which now propagates
in the electron direction, is destabilized by electron colli-
sions, while ion collisions have a stabilizing influence. We
note here that for 77, above a certain threshold, ion collisions
can also have a destabilizing influence.

In the banana regime of interest here, pitch angle scat-
tering dominates over scattering in energy. If we were to add
to the drift kinetic equation a linearized pitch angle scatter-
ing collision operator of the form

C(6h;) = 2v, (E)“’”i—_wi’_z_a_
' T B ol

dbh;
A(1—AB ”2—'—),
x(aa—amy 27

where A = u/E is the pitch angle variable, it is easy to see by
balancing terms that a boundary layer in pitch angle is
formed between trapped and circulating ions of width

mi (-t )(vw))
B B @

min max

, (29)

with v, ~v,E ~*/2/€. The collisional contribution to the
dispersion relation can be estimated using variational tech-
niques.*” The result is

/2
S = —ideE'“(M) .o (E)Fy;. (30)
®

Noting that v, < E ~3/% the energy integrals may be
straightforwardly evaluated 'to find that the dissipative con-
tribution is proportional to (1 — 3%,/4). We conclude
therefore that the trapped-ion branch remains unstable for
7, >4and v, <0, @,,.

Assuming these limits, we may provide an estimate of
the ion thermal diffusivity:

e pie
—~———
v, LR

Xi 31
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As is characteristic of trapped-ion modes, the predicted level
of thermal diffusion is both very large in magnitude and very
unfavorable in temperature scaling (y; < T7/?), thus indi-
cating a probable strong tendency for 7, to be forced below 4
in the collisionless regime.?' An important point to notice
from both Eqgs. (28) and (31) is that since y" «§~2, a satu-
ration of the heretofore experimentally observed favorable
current scaling of 7, may be anticipated for low ion-colli-
sionality discharges.

IV. FLAT-DENSITY LIMIT

One of the most conspicuous features of H-mode plas-
mas is the very flat electron density profile over the bulk of
the discharge. Assuming the ion density profile is about as
flat as the electron density profile (this depends on the impu-
rity and energetic-species profile), 7, goes to infinity, and
one might naively predict that thermal transport processes
intensify, a conclusion incompatible with experimental ob-
servations. A more careful analysis, however, shows that the
relevant stability parameter in this flat-density limit is
L,,/R, i.e., the ratio of the ion temperature gradient length
scale to the toroidal curvature radius, rather than 5, = L,/
L ,,.*® More recently, Dominguez and Waltz have made the
suggestion, based on a fluid analysis, that perpendicular
compression can completely stabilize the ion-temperature-
gradient-driven mode.?® The stabilizing influence identified
as resulting from perpendicular compressibility by these
authors, however, is in fact a result of the leftover piece of the
magnetic drift frequency caused by incomplete charge can-
cellation between electrons and ions. Perpendicular com-
pression does indeed have a stabilizing influence, but as we
shall show here, is unlikely to provide complete stabiliza-
tion, at least within the validity limitations of ignoring finite
sound effects.

To see why there can be little confidence in the predic-
tions of the nonresonant (or fluid) theory, it suffices to take
the 7; — oo limit of the nonresonant dispersion relation de-
rived in Sec. IT A:

20/10l;=b, + €+ [(1 + 777 )€ — 417 e ]V
(32)

where I, = — kp,v,/Ly;, and €;; = Ly;/R. Although for
€r: >4/(7 + 7) the mode is stabilized, the expansion in
w4 /@ which was used to obtain Eq. (2) breaks down, since
then o ~€r; L, ~w,;.

It is therefore necessary to go back to the resonant dis-
persion relation, Eq. (3), and look for marginal stability
[corresponding to Re D({};) = 0 in the Nyquist analysis].
As mentioned in Sec. 11, this is possible only numerically.
Such a numerical analysis has been carried out, and the re-
sult plotted in Fig. 2. The threshold value obtained for
b, =k, =0is L;;/R~0.35. Thus for a typical aspect ratio
of 3, the stability condition becomes L,;/a>1.05, which is
obviously never satisfied over the entire discharge. In con-
trast to Dominguez and Waltz,?® therefore, we conclude that
barring the possibility that finite Larmor radius and sound
corrections would significantly reduce the threshold, the
flat-density theory of ion-temperature-gradient-driven
modes does not predict a dramatic improvement in the ion
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FIG. 2. Stability diagram in L, vs L; space.

channel in the good confinement zone of H-mode discharges
where it is applicable. The electron channel, on the other
hand, can be dramatically improved by profile flattening in
this zone.

V. ENERGETIC TRAPPED-PARTICLE EFFECTS

An undesirable consequence of auxiliary heating has
been an almost universally observed degradation in confine-
ment with increasing input power, at least in the L-mode
regime of operation. Since many of the proposed heating
schemes (e.g., ICRF, ECRH, perpendicular neutral beam
injection) produce a profusion of energetic trapped parti-
cles, it becomes necessary to ask how these particles interact
with the background species and affect plasma instabilities.
The importance of trapped particles, insofar as stability
analysis goes, lies in the fact that they predominantly un-
dergo unfavorable drifts. This unfavorable drift can there-
fore be expected to provide an additional source of free ener-
gy for curvature-driven instabilities.**>’ We are then led to
ask what influence such a population of unfavorably drifting
energetic species has on the stability of toroidal ion-pressure-
gradient-driven drift modes.

Our frequency ordering is given by w,, » |0|>w,;. To
get a qualitative feel for their influence, we model the ener-
getic species as a Maxwellian distribution at high tempera-
ture (i.e., T, > T;, where the subscript “A  refers to the hot
particles) and low density (i.e., n, €n,,n,). This is a reason-
able model for those energetic particles created during radio
frequency heating, as these undergo something akin to a ran-
dom walk, wherein they suffer a kick after every excursion
close to the banana tip, and this kick may be in either direc-
tion. Further, we consider only the nonresonant limit (i.e.,
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|@|> @4, ) of these modes. This assumption is unlikely to be
realized in practice; however, it suffices to bring out the
qualitative features of the instability. The resonant limit will
be explored in a future publication. The resulting dispersion
relation is

N, _’ﬁ)_,_[ By — Wy + [75‘1:'/4'““)*.'(1“'77:‘)]‘-54.'

T, —Ti ® o’

e

kZc\ o -(1+77~)]
b. — 1 S> *i i
+( Y 20° 1)

n Dy — @
+ 2 —1+2J2_e(1+—ﬂ—*—”
T, @

+ [md,,/4——a)*,,(l+77,,)]

(02

w*h(1+77h))]
w

+blh H (33)

where the notation is a standard generalization of preceding
sections. Note that from quasineutrality
n,=mn; +n,,
dny, dn,  dng,
dr ar dr
Thus the dispersion relation is the solution to the quadratic
algebraic equation

L.
—niﬂz—(l—bu(lwh)—eﬁz\/f?—i"'l

ny: T nh Moj

X[l_blh(l"_ﬂh)_eh])ﬂ+ei(l+ni_%6i)

Lni ZB 7
+2\/_2—€(L )'Eh'ﬂ,(l'f'ﬂh—';fh):o, (34)

ah i
where } = —w/0,;, € = L,;/R,and B = p/B?is the spe-
cies beta content. We note that for strongly localized heat
deposition profiles, L,, €L,;, energetic particles can sub-
stantially exacerbate the instability.

V1. DISCUSSION AND SUMMARY

In a recent work,?""*? we explored the nonlinear evolu-

tion of the resonantly destabilized (@, » |w| ~@,; ) trapped-
ion-temperature-gradient-driven instability. The present in-
vestigation complements that work by investigating the
nonresonant limit (v > @, ) of the same instability, as well as
the moderate-wavelength (|w|~w, ;> ®,) branch of the
same family of instabilities. The so-called ‘*‘ubiquitous
mode” of Coppi*® is the short-wavelength branch (b, > 1) of
these instabilities. When juxtaposed with the slablike
branch,'*'> we have thus provided a unified account of elec-
trostatic ion-pressure-gradient-driven drift wave instabili-
ties and transport over all parameter regimes. It is important
to note that this family of instabilities is quite robust, in the
sense that at least one branch or another is likely to persist
upon changing bulk parameters. In particular, as is indicat-
ed by Eq. (25), while increasing the aspect ratio can have a
favorable influence in reducing the population of trapped
particles, this benefit comes only at the expense of aggravat-
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TABLE I. Compendium of relevant scalings for ion-pressure-gradient-driven modes.

Slab'2 13

Toroidal Trapped Ion
ko p; (L4+9)"" 2> kop>€/g A +9)7" >k, p,>€'?/q kop, <€"/q
7’/“’41» 1+, ( By 1+ 77.’)1/2 (‘/ﬁ @y 1+ 77.')'/2
T Dy, T Wy, 7
Ax/p, 1 )72 Ta,, 1 1 X
(e (222
SL, T 3/ @4 T
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ing the slablike branch of these modes. Perhaps alarmingly,
the theory suggests a possible saturation of the heretofore
favorable scaling with current as plasma discharges ap-
proach very low collisionality regimes. A partial summary of
our results is displayed in Table I. Note that all expressions
are well behaved in the limit of L, — oo.

In the process of this study, several of the experimental
features discussed in the Introduction were addressed. Of
potential significance is the issue of current scaling. The
transport coefficients of Sec. II evince an intrinsically local
inverse linear scaling with current. It has been suggested,*®
however, that the shear parameter scales as g(a), so that the
scaling with current may not be a strong one. A key clue to
the source of the current scaling may be the experimental
observation that profiles are found to hover about marginal-
ity. As was hinted in Refs. 22 and 33, there may in fact be no
intrinsically local current scaling at all, but rather that pro-
files in the bulk of the discharge remain marginal with re-
spect to ion-pressure-gradient-driven modes, and that trans-
port processes in the edge, such as resistive fluid turbulence,
dynamically couple in to the center of the discharge and thus
determine the transport scalings. Such a scenario is both
compatible with experimental observations and removes
several of the shortcomings of drift wave scalings, such as
unfavorable current and favorable temperature scaling. It
also reproduces the experimentally observed unfavorable
power scaling. Work on this front is in progress and will be
reported in a forthcoming publication.

In the meantime, more experimental evidence would be
welcome in helping to sort out among these various alterna-
tives. A definitive experiment in favor of or against an intrin-
sic current scaling would be most valuable in this regard.
Such an undertaking would require detailed ion temperature
profile measurements, coupled with observations of heat
pulse propagation, which could then be used in power bal-
ance calculations to determine the radially local parameter
scalings of the ion heat flux. Scaling laws for the ion heat flux
are generally much less unreliable and hence more useful
theoretically than scalings for the thermal diffusivity and
energy confinement time. This is because the asymmetric
terms of the transport matrix are likely to contribute to the
expression for the thermal flux, a feature often ignored in
power balance calculations. That empirically fitted energy
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confinement time scaling laws are not useful from a theoreti-
cal point of view follows from the fact that such scalings
depend on global parameters, whereas theory generally pre-
dicts Jocal scalings of transport coefficients, so that a com-
parison between the two may be, at worst, superfluous, and
at best, misleading.

More generally, the improvement in confinement with
pellet injection resulting from profile steepening suggests the
use of the latter as an active diagnostic tool. FIR scattering
diagnostics afford one an invaluable aid in identifying the
isotope and current scaling in the radial correlation length
[cf. Eq. (17)]. With regard to the improved bulk confine-
ment of H-mode discharges, two experimental results would
significantly aid theoretical attempts at understanding the
source of the improvement. First, it needs to be checked
whether the improvement comes about in the electron chan-
nel or ion channel, or both. This should be possible with
transport simulations, coupled with electron and ion tem-
perature profile measurements. Inferences drawn without
the availability of ion profiles cannot be considered conclusive.
Second, a careful look at the ion density profiles would be
most helpful.
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APPENDIX: DERIVATION OF THE DISPERSION
RELATION

In this appendix, we outline the derivation of Eq. (3).
The dispersion relation is given by

D@ = = (A7) + 77 [ 4T 45, oh,.
Using Eq. (2), we may write this as
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where

Fa,ﬂ= “iﬂ'—llzf d/lJ\dﬁfdl_)”
(1]
vl
X exp [ — avj — But +i/1(ﬂ—ﬁﬁ —7)]
exp (i)
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By integrating the differential equation, F,, ; may be written
in a more compact form,

aF a, B
a0
which it can easily be shown to satisfy. One obtains

(9]
Fa,3=2exp(—2ﬁﬂ)J‘ dyy='/?

(A2)

0
+2BF, ; =20""2exp( — Q) f dzz "% expz,

Xexp[ (28 — 1)y] J.y dzz "% expz. (A3)
Differentiating Eq. (A3) with respect to £ and rearranging
terms, an expression for d; F, ; can be derived:

O Fp=—[2/26—1DHIQQ2B—-1)+1]F,
—2Y+ 1/8}, (A4)
where
Y = (QF, )'?

1)
=0"2exp( — Q) f dzz7 "2 expz.

Having obtained d,; F, 4, all other needed derivatives can be
obtained:
3, F=1—-QF -1, F,
0 F= —2(Q+4)3; F +2F—8Y +6,
3 F= —1—Q3; F~13%F,
ALF=Q(Y*— 1438, F) +19} F,

where all expressions have been evaluated at a =fF = 1.
Putting all this together into Eq. (A1), we obtain Eq. (3).
The integral expression, Y({}) has the property that it is
purely real for 2 <0. It may be written in the useful alterna-
tive form

Q
Y(Q) = QY2 exp( — Q)( —ir'/? +f dzz='? expz) .
(4]
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